



CBSE NCERT Based Chapter wise Questions (2025-2026)

## Class-XII

## Subject: Physics

## Chapter Name : Magnetic Effect of Current (Chap : 4)

**Total : 6 Marks (expected) [MCQ(2)-2, Assertion-Reason-(1)-2, SA-II(1)-2 Marks, VSA-II(1)-3 Marks]**

## Level - 1

### MCQ Type :

1. A straight wire is kept horizontally along east-west direction. If a steady current flows in the wire from east to west, the magnetic field at a point above the wire will point towards  
(A) east (B) west (C) north (D) south

2. A piece of wire bent in the form of a circular loop A carries a current  $I$ . The wire is then bent into a circular loop B of two turns and carries the same current. The ratio of magnetic fields at the centre of loop A to that of the loop B will be  
(A)  $\frac{1}{16}$  (B) 16 (C) 4 (D)  $\frac{1}{4}$

3. The magnetic field at the centre of current carrying circular loop is  $B$ . The magnetic field at a distance of  $\sqrt{3}$  times radius of the given circular loop from the centre on its axis is  $B_2$ . The value of  $\frac{B_1}{B_2}$  will be  
(A) 9 : 4 (B)  $12:\sqrt{5}$  (C) 8 : 1 (D)  $5:\sqrt{3}$

4. A long straight wire of radius 'a' carries a steady current  $I$ . The current is uniformly distributed across its area of cross section. The ratio of magnitudes of magnetic fields  $B$ , at  $\frac{a}{2}$  and  $B_2$  at a distance  $2a$  from the axis of the wire is  
(A)  $\frac{1}{2}$  (B) 1 (C) 2 (D) 4

5. The radius of the circular path of an electron moving in magnetic field perpendicular to its path is equal to  
(A)  $\frac{Be}{mV}$  (B)  $\frac{me}{\beta}$  (C)  $\frac{mE}{\beta}$  (D)  $\frac{mV}{\beta e}$

6. What uniform magnetic field applied perpendicular to a beam of electrons moving at  $1.3 \times 10^6 \text{ ms}^{-1}$  is required to make the electrons travel in a circular arc of radius 0.35 m  
(A)  $2.1 \times 10^{-5} \text{ G}$  (B)  $6 \times 10^{-5} \text{ G}$  (C)  $2.1 \times 10^{-5} \text{ T}$  (D)  $6 \times 10^{-5} \text{ G}$

7. A charge  $Q$  is moving distance  $dl$  in the magnetic field  $\vec{B}$ . Find the value of work done by  $\vec{B}$   
(A) -1 (B) zero (C) 1 (D) infinity

8. Which particle will have minimum frequency of revolution when projected with the same velocity perpendicular to magnetic field?  
(A)  $\text{Li}^+$  (B) electron (C) proton (D)  $\text{He}^+$

9. A charged particle is moving in a uniform field  $(2\hat{i} + 3\hat{j}) \text{ T}$ . If it has an acceleration of  $(\alpha\hat{i} - 4\hat{j}) \text{ ms}^{-2}$ , then value of  $\alpha$  will be  
(A) 3 (B) 6 (C) 12 (D) 2

10. A current of  $200 \mu\text{A}$  deflects the coil of a moving coil galvanometer through  $60^\circ$ . The current to cause deflection through  $\frac{\pi}{10}$  radian is  
(A)  $30 \mu\text{A}$  (B)  $120 \mu\text{A}$  (C)  $60 \mu\text{A}$  (D)  $180 \mu\text{A}$

### Assertion and Reason:

**Directions:** Read the following questions and choose any one of the following four responses.

- A: Assertion and Reason both are correct and Reason is the correct explanation of Assertion.
- B: Assertion and Reason both are correct and Reason is not the correct explanation of Assertion.
- C: Assertion is correct but Reason is wrong.
- D: Assertion is wrong but Reason is correct.

**1. Assertion (A):** Two long parallel wires, freely suspended and connected in series to a battery, move apart.

**Reason (R) :** Two wires carrying current in opposite directions repel each other.

Ⓐ A

Ⓑ B

Ⓒ C

Ⓓ D

**2. Assertion (A):** An electric field is preferred in comparison to magnetic field for detecting the electron beam in a television tube.

**Reason (R) :** electric field requires low voltage.

Ⓐ A

Ⓑ B

Ⓒ C

Ⓓ D

**3. Assertion (A):** Magnetic field interacts with a moving charge and not with a stationary charge.

**Reason (R) :** A moving charge produces a magnetic field.

Ⓐ A

Ⓑ B

Ⓒ C

Ⓓ D

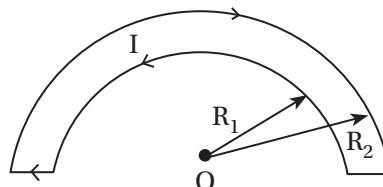
**4. Assertion (A):** The resistance of an ideal voltmeter should be infinite.

**Reason (R) :** The lower resistance of voltmeter gives a reading lower than the actual potential difference across the terminals.

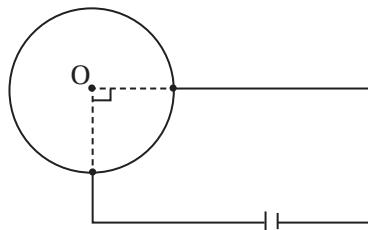
Ⓐ A

Ⓑ B

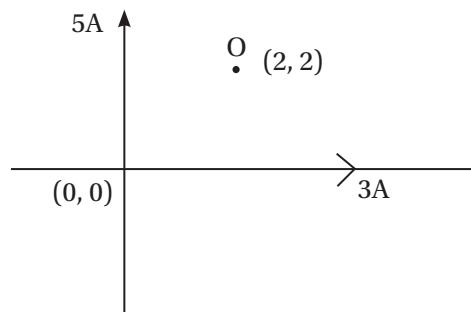
Ⓒ C


Ⓓ D

### Very Short Answer Questions :

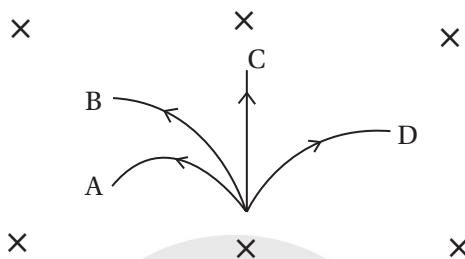

1. State Biot-Savart's law. How will you find the direction of the magnetic field.
2. Briefly explain why and how a galvanometer is converted into an ammeter.
3. Write two factors by which voltage sensitivity of a moving coil galvanometer can be increased.
4. Under what circumstances will a current carrying loop not rotate in the magnetic field.
5. Derive an expression for the force between two parallel short wires carrying currents.

### Short Answer Questions :


1. Find the magnetic field (with direction) at the point O for follow diagram.



2. Find the magnetic field (with direction) at the point O for follow diagram




3. Find the magnetic field (with direction) at the point O for follow diagram



4. Show that the magnetic field along the axis of a current carrying circular coil of radius  $r$  at a distance  $x$  from the centre of the coil is smaller by the fraction  $\frac{3x^2}{2r^2}$  than the field at the centre of the coil carrying current.

5. A neutron, a proton, an electron and an a particle enter a region of constant magnetic field with equal velocities. The tracks of the particles given in the following diagram. Identify the particle.



## ANSWER

### MCQs

|        |        |        |        |         |
|--------|--------|--------|--------|---------|
| 1. (C) | 3. (C) | 5. (D) | 7. (B) | 9. (B)  |
| 2. (D) | 4. (B) | 6. (C) | 8. (A) | 10. (C) |

### Assertion-Reason

|        |        |        |        |
|--------|--------|--------|--------|
| 1. (A) | 2. (D) | 3. (A) | 4. (A) |
|--------|--------|--------|--------|

- $\frac{\mu_0 I}{4} \left( \frac{1}{R_1} - \frac{1}{R_2} \right)$  (upward)
- Zero
- $2 \times 10^{-7} \text{ T}$  (downward)